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Abstract. We consider the statistical properties of coherent light Rayleigh-scattered by a 
solution containing an arbitrary number N of independent, identical particles. Expressions 
are obtained for the single-interval intensity probability distribution and the moments of 
this distribution, which are equivalent to the measurable photocount factorial moments. 
We discuss both the case of fixed N and the situation where N varies according to a Poisson 
distribution. For large N ,  the scattered electric field has, to a good approximation, gaussian 
statistics, but for small N. marked departures from gaussian statistics are predicted. I t  is 
argued that, in many scattering experiments, there is the potential to obtain from measure- 
ments in the non-gaussian regime (N small) useful system-dependent information which is 
not available in the gaussian regime.' 

1. Introduction 

In the decade or so since the advent of the laser, the study of fluctuations in the intensity 
of scattered laser light has proved to  be a powerful experimental tool, particularly in 
the investigation of fluid systems (see, for example, Benedek 1969, Pike 1969, Cummins 
and Swinney 1970, Jakeman and Pike 1974). It is the purpose of this paper to calculate 
the amplitude distribution of the electric field of light scattered by a model system of N 
independent scatterers, and, in doing so, to characterize the conditions under which 
useful information on a system under study can be extracted from the measured single- 
interval photocount distribution. 

Hitherto emphasis has been on characterization of the time-dependence, or equi- 
valently the power spectrum, of the fluctuating scattered intensity. A particular statistical 
form, gaussian statistics, has generally been assumed for the amplitude distribution, and 
the properties of that form have been used to relate measured quantities (photocount 
correlation functions, photocurrent spectra) to the dynamics of molecular motion. The 
gaussian field distribution is characterized by a single parameter, the average intensity. 
Thus no other system-dependent information can be extracted from the field statistics 
in the gaussian limit, and single-interval fluctuation statistics in scattering experiments 
have largely been ignored. 

The gaussian assumption is generally quite good. In fact it is usually fairly difficult 
to observe non-gaussian statistics. Gaussian statistics are expected whenever the total 
scattered field can be viewed as the sum of many, independent contributions. This fact 
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will be demonstrated below using a random walk approach to sum the independently- 
phased contributions (see, also, Cummins and Swinney 1970, Beckmann and Spizzichino 
1963). In order to observe non-gaussian field statistics it is necessary to reduce the size 
of the scattering volume to the point where it no longer contains many independent 
scatterers. In the case of truly independent scatterers such as a dilute solution of macro- 
molecules, marked deviations from gaussian statistics will be observed when the 
scattering volume contains less than about ten scatterers. Unless the scatterers are 
micron size or larger, the scattered field is usually too weak to be studied in this limit. 
Similarly, light scattered by correlated scatterers will deviate measurably from gaussian 
form when the volume over which the scatterer motions and positions are correlated 
becomes comparable to the scattering volume, even though the actual number of 
scatterers is large. However, correlation volumes, as, for instance, in pure fluids, are 
generally much smaller than diffraction-limited scattering volumes, making the non- 
gaussian regime difficult to achieve even near critical points. 

Recent experiments have, nevertheless, demonstrated that the non-gaussian regime 
can be achieved both for independent and correlated scatterers. In the case of independent 
scatterers, non-gaussian statistics have been observed for aqueous suspensions of 
polystyrene spheres about 1 Fm in diameter. (Schaefer and Berne 1972, Schaefer and 
Pusey 1972,1973). In this case the unique system-dependent information obtained from 
the fluctuation statistics is the number density of scatterers. It should be remembered 
that in the gaussian limit neither the single-interval statistics nor the time-dependence 
of the intensity fluctuations yields this information. Non-gaussian statistics have also 
been observed recently for a nematic liquid crystal in its ‘dynamic scattering’ mode 
(Jakeman and Pusey 1973a, b). In this case the phase of the electric field transmitted 
by, a thin film of liquid crystal is correlated over a range of several microns; this 
correlation range can be obtained fiom the statistics of the scattered light. Once again, 
this information cannot be determined from the statistics in the gaussian limit. Similar 
effects have been observed in scattering from coarse-grained ground glass (Bluemel er a1 
1972). It should be noted also that non-gaussian statistics have been encountered for 
several years in the field of laser anemometry (see, for example, Di Porto et a1 1969, 
Bourke et a1 1970). However, in these latter measurements, emphasis has been on the 
time-dependence, rather than the single-interval statistics, of the scattered light. 

Thus it can be said that, if gaussian statistics are observed in an experiment, the 
experiment is, by virtue of a ‘large’ scattering volume, designed, intentionally or 
otherwise, to mask some potentially useful information about the system under study. 
If the scattering volume in such an experiment were reduced until it contained only a 
few correlation volumes, the statistics would cease to be gaussian and would be dependent 
on the system in question, thus providing further information. 

Although correlated systems are potentially more interesting, this paper will 
concentrate on the statistics of light scattered by an arbitrary number of independent 
particles. The theory produced here is useful for estimating the deviation from gaussian 
statistics to be expected in any experiment on identical independent scatterers such as 
dilute solutions of polymers or biological macromolecules, cells etc. It can also be 
considered as the simplest model of a correlated system, where each correlation volume 
is regarded as an independent ‘particle’. This approach has already been used with 
some success in the liquid crystal work mentioned above. 

Several simplifying assumptions are made throughout this paper. These assumptions 
include a uniformly illuminated scattering volume, total spatial coherence at the 
detector, and sampling intervals short compared to the fluctuation time of the scattered 
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intensity. These conditions, not always achieved in practice, allow exact expressions 
to  be obtained for P(I) ,  the probability distribution of the integrated intensity, and for 
the moments of this distribution (or equivalently, the photocount factorial moments). 
If these assumptions are not made, exact expressions for the above quantities are 
difficult to obtain, although the first few intensity moments can be calculated in a 
rather tedious way (Schaefer and Pusey 1972, 1973). 

The theoretical treatment in this paper leans heavily on studies of the two-dimensional 
random walk problem performed some seventy years ago (Kluyver 1905, Pearson 1906, 
Rayleigh 1919). Non-gaussian statistics in light scattering have also been discussed 
by Korenman (1970) using a rather general approach, and to some extent by Cantrell 
(1 968). 

2. Theory 

Consider a solution of N identical non-interacting particles, dispersed in a liquid 
medium, illuminated by plane monochromatic light, whose scattering is observed in 
the far-field by a detector with active area much smaller than a coherence area. Let 
us assume the particles to be spherically symmetrical and/or small compared to the 
wavelength of the incident light, so that rotational effects are negligible. The complex 
analytic signal E+( t ) ,  the positive frequency part of the electric field (see, for example, 
Born and Wolf 1965, p 495), observed at the detector is then 

N 

E + ( t )  = B eiof 1 exp(iK. r j )  
j =  1 

where p2 is the mean intensity scattered by one particle, o is the angular frequency of 
the light, K is the scattering vector and r j  is the instantaneous position of the jth scatterer. 
(If the particles move in a random fashion as, for instance, in brownian motion, the 
electric field will fluctuate randomly with coherence time roughly equal to the time it 
takes one particle to move a distance 1/1K1.) We have assumed the incident illumination 
to be uniform throughout the scattering volume, and will also assume the dimensions 
of the scattering volume to be large compared to  l/lKl. It is then evident that if the 
scatterers move in such a way that r j  can have any value within the scattering volume, 
regardless of the positions of the other scatterers (uniform mean density of non-interacting 
scatterers), K . r j  is a random variable whose principal value takes on all values from 
0 to  27t with equal probability. Thus equation (1) describes a two-dimensional random 
walk of N unit steps in the complex plane. For large N ,  it is well known that this leads 
to a gaussian probability distribution for E +  (see, for example, Glauber 1965, equation 
(14.48)) 

where 

(lE'12) = Np2. 

I = )E+12 

Identifying 
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as the instantaneous intensity of the scattered light, the probability distribution of the 
intensity PN(I ) ,  in the large N limit, is given by 

Thus, though the electric field has gaussian statistics, P N ( I )  is exponential. 
For small N equations (2) and (5) are not valid. However, an expression for P N ( I )  

for arbitrary N can be obtained simply from Kluyver’s (1905) work on the two- 
dimensional random walk, with the result 

(see also Pearson 1906, Rayleigh 1919). Here J, is the zero-order Bessel function of the 
first kind. For one scatterer, N = 1, equation (6) reduces, as it must, to a 6 function at 
I = ( I )  = j2. For N = 2, 

1 
p2(z)  = 71[1(2(1) - I ) ]  1’2’ 

(7) 

where ( I )  = 2p2. This result can be obtained from equation (6); it can be derived 
more simply from first principles. An expression exists for P, ( I )  in terms of elliptic 
integrals (Pearson 1906, Rayleigh 1919). For N > 3, however, it appears that no 
closed-form solution of equation (6) has been obtained, although Pearson has performed 
a graphical solution for N c 7. With normalizations appropriate for our problem 
Pearson’s results are plotted in figures 1 and 2 for N = 2 , 3 , 4  and 5 ;  ( I ) P N ( I ]  is plotted 

-- --._ 
I 2 3 4 
I I I - - - - -__  _ _  

I t m  
Figure 1. Single-interval intensity distribution PN(I) for fixed N = 2 and 3. The broken curve 
is the exponential limit (gaussian field distribution). 
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Figure 2. P,,,(I) for fixed N = 4 and 5. 

against I!( I )  so that direct comparison can be made with equation (5) (the broken curve). 
For small N ,  the light is clearly non-gaussian, P N ( I )  showing both infinities and dis- 
continuities; however even for N as small as 5 the approach to exponential form is 
quite evident. For N > 7 there are no  infinities or discontinuities and a good approxima- 
tion to  PN(I )  can be obtained from the first few terms of a series expansion of equation (6),  
with the result : 

At first sight, the occurrence of infinities in the probability functions P ( I )  might be 
considered rather surprising. It should be realized, however, that the integrated 
probability that I lies in an interval d l  about some value will always be finite. A rather 
appealing comparison with a one-dimensional random walk can be invoked to explain, 
at least in part, the values of I at which the infinities or discontinuities occur. For a 
one-dimensional random walk of one step, the resultant length must, of course, be one 
step; the same holds true in two dimensions. For a one-dimensional random walk of 
two steps the resultant length will be either zero or two steps, each possibility having 
probability i. In two dimensions the probability distribution is smoothed somewhat, 
but there are still infinites ip P , ( I )  corresponding to the 6 functions in the 
one-dimensional case. For three steps in one dimension there are two possibilities : a 
resultant length of one with probability $, corresponding to  the infinity at I / ( I )  = f in 
the two-dimensional case (figure l),  and a resultant length of 3 with probability a, 
corresponding to  the cut-off at I / ( I )  = 3 in figure 1. 

The above results have been derived assuming the number of particles N in the 
scattering volume to be constant. Although such a situation can, in principle, be achieved 
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it is simpler experimentally to allow N to vary. In a typical experiment one will define 
by optical means a scattering volume much smaller than the sample volume itself. 
Under the assumptions of partide independence and constant mean number density 
of particles within the sample, the distribution P(N) of particles within the scattering 
volume will be Poisson (Chandrasekhar 1943). The coherence time associated with 
fluctuations in N will be much longer than that for the 'interference fluctuations'discussed 
earlier, the former being of the order of the time it takes a particle to move across the 
scattering volume (many wavelengths), while the latter is of order of.the time it takes a 
particle to move one wavelength. Denoting the intensity probability distribution by 
P,(Z) for fixed N and P(&) for N variable, we obtain an expression for PcN)(Z) by 
averaging equation (6 )  with a Poissdn distribution for N, ie 

where 

to give 

Figure 3 shows P < N ) ( I )  for (N) = 2. Some 32 % of the area under this curve consists 
of a 6 function (not shown in figure 3) at I / ( I )  = 0.5, corresponding to the time when 
only one particle is in the scattering volume. The infinity shown in figure 3 at I / (  I )  = 0.5 
arises from the P,(Z) term in equation (9). 

Although expressions have been derived above for the intensity distribution P ( I ) ,  
one cannot measure P ( I )  directly. Rather one measures P(n), the probability of accumu- 
lating n detected photons, or photocounts, in a sample time, assumed here to be short 

Figure 3. P < N ) ( I )  for variable N ,  ( N )  = 2. 



536 P N Pusey, D W Schaefer and D E Koppel 

compared to the coherence time of the scattered light. Due to the stochastic nature of 
the detection process, P(n) will not, in general, show the fine detail of P(Z). Only when 
the average number of photocounts detected per sampling interval is large, does P(n) 
approach P(Z). One can obtain P(n) from P(Z) using the Mandel relationship (Mandel 
1963). This leads to a formal expression for P(n) in terms of an apparently intractable 
sum to infinity of the moments of P(I). A more productive approach is to calculate the 
moments of P(Z). The normalized intensity moments ( Z m ) / ( Z ) m  are equal to the 
normalized photocount factorial moments (n(n - 1 ) .  . . (n  - m + l ) ) / (n) '" ,  easily obtained 
from the measured P(n) (this result is inherent in equation ( l o b )  of Mandel 1959; see 
also Pike 1969, Cantrell 1970). 

Consider the case for fixed N .  We construct the generating function 

from which 

From equations (6) and (12), 

4 N ( A )  = iJm ( JCO e-"J0(UJZ) dZ) U(Jo(U/l))N dU 
0 0  

Writing ( ~ ~ ( J ; l p ) ) ~  as a power series 
m 

( J o ( J ; ; P ) ) ~  = Qp(~PZ)P,  
p = o  

one finds 
CO 

$ N ( A )  = QpbZpP!(4A)Ps 
p = o  

Thus, from equation ( 1  3) 

( I " )  = (m!)'pZm( -4)"Q,. (14) 

The Q, are evaluated in the appendix leading to the following expression : 

where the aj are non-negative integers and the summation over { a )  is performed subject 
to the conditions 

m m ... 1 j a j  = m and 1 ai = 1. 
j =  1 j =  1 
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As before, equation (15) can be averaged with a Poisson distribution P ( N )  (see equation 
(10)) for N to give ( I " )  for variable N .  Since 

we can write, using equations (3), (4), (1 5) and (17), 

( I , )  1 
( I ) "  " I = ,  

1 CI,NDm,l  
-- -- 

where 

for N fixed cI,N = i" ( N - O !  
I (N)' for N variable 

(19) 

and 

The D,,l are given in table 1 for the first six moments. The moments for variable N 
could equally well have been obtained by constructing the generating function for 
equation (1 1). 

Table 1. Values of Dm,, 

\ - I  2 3 4 5 6 
1 

1 1 1 1 1 1 1 
2 2 9 34 125 46 1 
3 6 72 650 5400 
4 24 600 10500 
5 120 5400 
6 720 

3. Discussion 

For large N the term in equation (18) for 1 = m will dominate. For this term, only 
a,  = m, a, . . . a, = 0 fulfil the conditions of equation (16). Thus 

Comparison of equation (21) with the moments obtained from equation ( 5 )  shows that, 
in the limit ( N )  -, m, the light is, as it must be, gaussian, both for fixed and variable N .  
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The first five intensity moments for variable N are, from equation (18) and table 1, 

( I ) / ( I )  = 1 
( 1 2 ) / ( 1 ) 2  = 2+1/(N) 

(13)/(1)3 = 6+9/(N)+ l/(N)' 

(14)/(1)4 = 24+72/(N)+34/(N)2+ l/(N)3 

( I  5 ) / (  1)' = 120 + 6OO/( N) + 650/( N)' + 125/( N ) 3  + 1/( N)4. 

In figure 4 we plot (/'")/m! (I)'" against (N) for m = 2,3,4. For gaussian light these 
quantities would be unity. For fixed N they are found to be less than one indicating 
intensity fluctuations of smaller magnitude than for gaussian light, whereas for variable N 
the intensity fluctuations have magnitude greater than those of gaussian light. In both 
cases the gaussian value is approached as N + CO. It should be noted that, although 
for (N)  = 7 P(Z) looks exponential to within a few per cent, the fourth momerlt, for 
instance, differs from the gaussian value by nearly 50 %. 

Figure 4. Second, third and fourth moments of 01) for fixed and variable N. 

The expression for the moments of P ( l ) ,  equation (18), has also been obtained directly 
from equations (1) and (4), constructing ( Im) and using factorization properties valid 
for independent scatterers of the resulting average of products of sums (Chen et al 1973). 
This approach, however, does not yield expressions for P(1). 

As mentioned in the introduction experiments have been performed to test the 
predictions derived here (Schaefer and Pusey 1972, 1973). When account was taken 
of experimental effects such as non-uniform illumination of the scattering volume and 
incomplete spatial coherence, good agreement between experiment and theory for the 
first few moments was found. 
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Finally attention should be drawn to the fact that the mathematical treatment in 
this paper is similar to that used by Hodara (1965) when considering the statistics 'of 
multi-mode laser light under the somewhat unrealistic assumption of independently 
phased modes. The main difference between Hodara's work and ours is that he 
concentrated on the probability distribution of the electric field, the real part of equation 
(I), whereas we have been concerned with the experimentally accessible intensity 
probability distribution. 
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Appendix. Calculation of Q, 

We require Q, in the equation 
m 

(Jo(&PNN = 1 Q,P2'xx'. 
p = o  

We have, as an identity (Abramowitz and Stegun 1965, p 360), 

Therefore 

Now 

* x' r!y:ly?. . . y,"' 
q =  1 (1!y1(2! )Q.  . . ( r ! )*a l !u2 ! .  . . a r !  

where the summation over { U }  is performed subject to the conditions 
r r 1 ai = 1 and j a j  = r, 

j =  1 j =  1 

(Abramowitz and Stegun 1965, p 823). Thus 

Comparison with equation (A.l) gives 

subject to 
P P 1 ai = 1, 1 j u j  = p .  

j =  1 j =  1 
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Finally it can easily be shown that the limits on the summation over 1 in equation (A.2) 
can be changed to 1 and p .  
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